Estimates Away From a Discontinuity for Dissipative Galerkin Methods for Hyperbolic Equations

نویسندگان

  • William J. Layton
  • WILLIAM J. LAYTON
چکیده

We consider the approximate solution of the initial value problem du du , .. . . _ = _ „(*,0) = »(*), by a dissipative Galerkin method. When v is taken to have a jump discontinuity at zero, that discontinuity will propagate along x + t = 0, in the true solution u. Estimates in L^ and Lx of the pollution effects of the discontinuity are found. These estimates show those effects to decay exponentially in A"1 in regions a fixed distance d from the discontinuity and exponentially in d for fixed h.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials

Abstract. Simulation of electromagnetic wave propagation in metamaterials leads to more complicated time domain Maxwell’s equations than the standard Maxwell’s equations in free space. In this paper, we develop and analyze a non-dissipative discontinuous Galerkin (DG) method for solving the Maxwell’s equations in Drude metamaterials. Previous discontinuous Galerkin methods in the literature for...

متن کامل

A Priori Estimates for Mixed Finite Element Approximations of Second Order Hyperbolic Equations with Absorbing Boundary Conditions

A priori estimates for mixed nite element methods for the wave equations, 6] T. Dupont, L 2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J.

متن کامل

Legendre and Chebyshev dual-Petrov–Galerkin methods for Hyperbolic equations

A Legendre and Chebyshev dual-Petrov–Galerkin method for hyperbolic equations is introduced and analyzed. The dual-Petrov– Galerkin method is based on a natural variational formulation for hyperbolic equations. Consequently, it enjoys some advantages which are not available for methods based on other formulations. More precisely, it is shown that (i) the dual-Petrov–Galerkin method is always st...

متن کامل

Explicit Finite Element Methods for Symmetric Hyperbolic Equations∗

A family of explicit space-time finite element methods for the initial boundary value problem for linear, symmetric hyperbolic systems of equations is described and analyzed. The method generalizes the discontinuous Galerkin method and, as is typical for this method, obtains error estimates of order O(hn+1/2) for approximations by polynomials of degree ≤ n.

متن کامل

Discontinuous Galerkin method for hyperbolic equations involving δ - functions 1

In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve hyperbolic equations involving δ-functions. We investigate negative-order norm error estimates for the accuracy of DG approximations to linear hyperbolic conservation laws in one space dimension with singular initial data. We prove that, by using piecewise k-th degree polynomials, at time t, the error in the H(R\...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010